173 research outputs found

    Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    Get PDF
    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected Recombinant Inbred Lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and above ground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and co-located with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated to those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses. Especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives

    Genomic regions in crop-wild hybrids of lettuce are affected differently in different environments: implications for crop breeding

    Get PDF
    Many crops contain domestication genes that are generally considered to lower fitness of crop–wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness. We performed quantitative trait loci (QTL) analyses on fitness(-related) traits in two different field environments employing recombinant inbred lines from a cross between cultivated Lactuca sativa and its wild relative Lactuca serriola. We identified a region on linkage group 5 where the crop allele consistently conferred a selective advantage (increasing fitness to 212% and 214%), whereas on linkage group 7, a region conferred a selective disadvantage (reducing fitness to 26% and 5%), mainly through delaying flowering. The probability for a putative transgene spreading would therefore depend strongly on the insertion location. Comparison of these field results with greenhouse data from a previous study using the same lines showed considerable differences in QTL patterns. This indicates that care should be taken when extrapolating experiments from the greenhouse, and that the impact of domestication genes has to be assessed under field conditions

    Distribution of P1(D1) wart disease resistance in potato germplasm and GWAS identification of haplotype-specific SNP markers

    Get PDF
    Key message: A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNPmarkers associated with pathotype 1(D1) wart disease resistance. Abstract: Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease. This paper addresses the challenge to apply molecular markers in potato breeding. Although markers linked to Sen1 were published before, the identification of haplotype-specific single-nucleotide polymorphisms may result in marker assays with high diagnostic value. To identify hs-SNP markers, we performed a genome-wide association study (GWAS) in a panel of 330 potato varieties representative of the commercial potato gene pool. SNP markers significantly associated with pathotype 1 resistance were identified on chromosome 11, at the position of the previously identified Sen1 locus. Haplotype specificity of the SNP markers was examined through the analysis of false positives and false negatives and validated in two independent full-sib populations. This paper illustrates why it is not always feasible to design markers without false positives and false negatives for marker-assisted selection. In the case of Sen1, founders could not be traced because of a lack of identity by descent and because of the decay of linkage disequilibrium between Sen1 and flanking SNP markers. Sen1 appeared to be the main source of pathotype 1 resistance in potato varieties, but it does not explain all the resistance observed. Recombination and introgression breeding may have introduced new, albeit rare haplotypes involved in pathotype 1 resistance. The GWAS approach, in such case, is instrumental to identify SNPs with the best possible diagnostic value for marker-assisted breeding.</p

    Options to Reform the European Union Legislation on GMOs: Scope and Definitions

    Get PDF
    We discuss options to reform the EU genetically modified organisms (GMO) regulatory framework, make risk assessment and decision-making more consistent with scientific principles, and lay the groundwork for international coherence. The first in a three-part series, this article focuses on reform options related to the scope of the legislation and the GMO definition.</p

    Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola

    Get PDF
    Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat field

    The role of scale explants in the growth of regenerating lily bulblets in vitro

    No full text
    Lily scale-explants cultured in vitro regenerate adventitious bulblets at their base. Large scale-explants (6 × 18 mm; the basal side is 6 mm) yielded more (26%) bulblet growth than small ones (6 × 6 mm). The beneficial effect of the scale was also clear when bulblets excised from scale explants were transferred to fresh medium for additional growth. When a small piece of the original scale was left attached to these bulblets, growth increased by 33%. The growth of bulblets was highest in explants cut from the middle of a scale as opposed to the edge, and in explants cut from the basal half as opposed to the apical half. We examined the development of the scale-explants during the period of bulblet regeneration in vitro and the scale explants were physiologically very active as judged by the decrease in the amount of polysaccharides in the explant (ca.70%) and the increase in total amount of soluble sugars in the explant (ca. 40%). In the basal scale explants, the number of starch granules was far higher than in apical scale explants. During culture, the number of vascular bundles increased in basal and apical scale explants from 6 to 3.3 to 8 and 4 bundles, respectively

    Potato starch synthases : Functions and relationships

    No full text
    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still insufficient. Starch biosynthesis requires the action of several enzymes. Soluble starch synthases (SSs) are a group of key players in starch biosynthesis which have proven their impact on different aspects of the starch biosynthesis and functionalities. These enzymes have been studied in different plant species and organs in detail, however, there seem to be key differences among species regarding their contributions to the starch synthesis. In this review, we consider an update on various SSs with an emphasis on potato SSs as a model for storage organs. The genetics and regulatory mechanisms of potato starch synthases will be highlighted. Different aspects of various isoforms of SSs are also discussed
    • …
    corecore